sábado, 24 de diciembre de 2016

TRATAMIENTO DE AGUAS RESIDUALES



1.    Introducción


En el siglo XIX, la epidemia del cólera azotaba a Europa, por lo que se comenzaron a construir sistemas de alcantarillado que garantizaran la salud pública. Sin embargo las cloacas terminaban desechando las aguas residuales  directamente en corrientes, lagos y estuarios, sin tratarla previamente. Las poblaciones fueron creciendo y se siguió contaminando los cuerpos de agua hasta que se rebasó su capacidad de autodepuración, y las condiciones de los lagos y estuarios fueron deplorables, resultando en  focos de infección y vectores. La población se dio cuenta que solo trasladaron el problema de lugar, la situación precaria de salubridad llevó a la humanidad a estudiar los fenómenos de autodepuración de los lagos. Estas investigaciones asentaron los fundamentos del tratamiento de aguas residuales a finales del siglo XIX y principios del siglo XX.  Ya por 1920 se fueron perfeccionando los sistemas de tratamiento de aguas residuales, y para 1960 los sistemas dejaron de ser empíricos, debido a que se formularon  y cuantificaron  los procesos originales.  
El tratamiento de aguas residuales es una operación clave para mantener el equilibrio y la capacidad de autodepuración del cuerpo de agua receptor.  Existiendo  diversas operaciones unitarias involucradas. La elección de las operaciones unitarias que conformaran el tren de tratamiento dependerán de las características del efluente, siendo factores fundamentales: el pH, la temperatura, el flujo volumétrico, su procedencia,  la concentración de materia orgánica, el contenido de sólidos, y las propiedades físico-químicas del material contaminante.     

2.    Tratamiento de Aguas Residuales  

2.1  Tratamiento primario


La primera etapa de un sistema de tratamiento de residuos líquidos incluye normalmente, la separación de sólidos y material no disuelto (ej.: grasas, coloides), neutralización de pH, regulación de caudal y estabilización térmica. La variedad de sistemas disponibles comercialmente es muy amplia para una completa revisión aquí. Los sólidos más gruesos se eliminan a través de cribaje, mientras que aquellos de menor tamaño se eliminan usando mecanismos de sedimentación o flotación. Los principios básicos se revisan a continuación. Primeramente, será necesario neutralizar y estabilizar el flujo y composición del efluente.

2.1.1 Neutralización de pH

Se aplica cuando el efluente tiene un pH fuera de los límites aceptables. Normalmente, se usan ácidos (o bases) para llevar el pH a un rango cercano a 7. En aquellos casos donde existan líneas ácidas y básicas de concentraciones similares, será posible neutralizarlas mezclándolas con anterioridad al tratamiento primario.

2.1.2 Estabilización de flujo

Normalmente, el flujo y composición de los residuos líquidos presenta enormes variaciones durante la operación rutinaria de la planta, reflejando diferentes operaciones que tienen lugar durante el proceso (ej.: lavado de los reactores). Ello puede presentar serios problemas, particularmente para las operaciones de tratamiento secundario, que se caracterizan por ser procesos muy lentos, cuya eficiencia es muy sensible a las variaciones de flujo y concentración.
Para garantizar un flujo y carga lo más constante posibles se puede usar un tanque de almacenamiento (homogeneizador), con un tiempo de residencia lo suficientemente largo como para amortiguar las variaciones. El tiempo de residencia (normalmente, entre 4 y 24 horas) está determinado por las características de operación de la planta, la biodegradabilidad del material orgánico y el tipo de tratamiento secundario.
Un tiempo de residencia muy largo, implicará un tanque de mayor volumen (es decir, mayor costo), y puede dar lugar a crecimiento microbiano, malos olores, etc.. Cuando se trate de volúmenes de líquido muy grandes (ej.: miles de m3), se puede usar lagunas de estabilización.
La segregación de las líneas residuales de mayor contenido orgánico (que requieren de tratamiento secundario) puede resultar en una substancial disminución del flujo, con la consiguiente reducción del volumen del tanque de retención.

2.1.3 Eliminación de sólidos gruesos

Los sólidos gruesos flotantes (ej.: astillas, corteza), pueden ser eliminados a través de cribas o tamices. Se debe especificar la anchura del canal y de las barras de la criba, sobre la base de la velocidad requerida para evitar la sedimentación de los sólidos. Dicha velocidad de flujo a través de la criba debe exceder 0,5 m/s, lo cual requiere de una adecuada selección de la anchura del canal. Los sólidos son removidos mecánicamente (dragas), en forma continua.
Las arenas y gravas se deben eliminar para evitar la abrasión. Un desarenador bien diseñado debe remover al menos 95% de las partículas con diámetro mayor de 0,2 mm. Para evitar la eliminación de materia orgánica, que puede producir descomposición posterior, se usa una velocidad de 0,3 (m/s), que permite eliminar los sólidos inorgánicos, pero no los orgánicos.
Otros diseños incluyen desarenadores aireados, donde el aire produce corrientes suaves que impiden la sedimentación de materia orgánica, pero no de la inorgánica.
Sedimentación primaria: Se debe retirar los sólidos suspendidos (0,05-10 mm en diámetro), cuando estos están presentes en gran cantidad. No es esencial removerlos antes del tratamiento biológico, pero su separación física (primaria), puede conducir a la eliminación de un 30-40% de DBO (dependiendo de la biodegradabilidad de los sólidos). Así, se puede reducir la carga orgánica para el tratamiento biológico, y reducir la cantidad de lodos biológicos generados. La sedimentación es, por lo tanto, el proceso de tratamiento de aguas más usado.  
Un tanque ideal debe tener 4 características:
• La zona de entrada debe facilitar la reducción y uniformización de la velocidad del efluente.
• Un canal de salida, para captar el líquido clarificado, con trampas para el material flotante (ej.: aceites).
• Una zona de sedimentación que representa la capacidad del tanque. En esta zona tiene lugar la sedimentación, y no debe presentar cortocircuitos o áreas estancadas.
• Una zona de almacenamiento y eliminación de los sedimentos.

La sedimentación ocurre debido a la acción de la gravedad. El tamaño y la densidad de las partículas son factores importantes en el resultado final de la operación. Algunas partículas mantendrán su identidad durante la sedimentación (discretas), mientras que otras van a flocular (partículas floculantes). En general, la velocidad de sedimentación de partículas, es directamente proporcional al cuadrado del radio, y a la diferencia de densidad entre el sólido y el líquido.

2.1.4 Flotación

 La flotación se usa para eliminar sólidos y material no disuelto agregando burbujas de aire para lograr una densidad aparente menor que la del líquido. También se utiliza para concentrar los lodos.

1)     Flotación con aire disuelto (FAD): Al agregar aire bajo presión, se forman millones de microburbujas (diámetro 0,02-0,1 mm) que se meten dentro de los flóculos, o se nuclean alrededor de los sólidos suspendidos, o quedan atrapadas en los flóculos durante su formación (especialmente cuando se agregan agentes coagulantes o floculantes). La densidad aparente del conglomerado disminuye, y flota en la superficie
La flotación es muy usada en la separación y recuperación de fibra celulósica, grasas, carbohidratos y proteínas. Presenta menos riesgo de malos olores, ya que la aireación evita la descomposición anaeróbica del material biodegradable.

2)     Electroflotacion: El equipo consiste en un tanque (que actúa como cátodo) y varios ánodos. Se aplica directamente una corriente, usando un voltaje de 10-15 volt. Los cationes formados en el cátodo neutralizan las cargas negativas de las partículas, las que coagulan y luego son flotadas por las microburbujas formadas electrolíticamente. La carga eléctrica de las substancias coloidales y emulsificadas de origen industrial es generalmente negativa. El proceso de electroflotación neutraliza eléctricamente las cargas de las partículas, las que pueden flocular y ser llevadas a la superficie por microburbujas de oxígeno e hidrógeno que se forman por acción electrolítica. Permite tratar aguas con concentraciones de sólidos flotantes de 9-12%, comparados con 3-5% en el caso de la FAD, sin que se requieren agentes floculantes, ni reciclo. Sin embargo, pueden existir problemas de corrosión en el ánodo.
Típicamente, el tiempo de residencia en la electroflotación está en el rango 7-12 min, con un consumo de electricidad estimado en 0.5 kWh/m3. El tamaño típico de una unidad de electroflotación permite tratar un flujo de 3000 m3/día.

2.2  Tratamiento secundario


El material orgánico solubilizado o en estado coloidal, puede ser utilizado como fuente de carbono por parte de microorganismos existentes en el medio, transformándolos en subproductos volátiles y en componentes celulares. A su vez, las células microscópicas pueden ser separadas del efluente, utilizando técnicas de separación sólido/líquido.

Estos principios son utilizados en los sistemas de tratamiento biológico de efluentes contaminados con material orgánico bioutilizable. Las diferencias entre los diferentes procesos, se manifiestan en el tipo de microorganismos utilizados, la configuración de los biorreactores, su modo de operación y el tipo de actividad biológica presente.

En estos sistemas, los contaminantes orgánicos son degradados por organismos que los transforman en compuestos más sencillos, de fácil eliminación (ej.: CO2, CH4) o incorporados al proceso de síntesis de material celular y, por lo tanto, concentrados en la biomasa. Esta última puede entonces ser eliminada con más facilidad por procesos de separación sólido-líquido.

Los microorganismos juegan un papel fundamental en los sistemas de tratamiento de residuos líquidos. Algunos antecedentes básicos se presentaron en los capítulos iniciales. En términos generales, los microorganismos heterótrofos necesitan carbono, nitrógeno, fósforo y trazas de metales para llevar a cabo las reacciones metabólicas y reproducirse. Dichos microorganismos se clasifican en aeróbicos y anaerobicos:

2.2.1      Sistema de tratamiento aeróbico

 

Los procesos aeróbicos de tratamiento de efluentes están diseñados para acelerar los procesos de aireación natural y bioxidación del material orgánico. Nos referiremos aquí a las lagunas de aireación, a los sistemas de lodos activados (en sus variaciones más relevantes) y a los filtros biológicos. En cada caso, se mostrarán las características operacionales básicas y los parámetros de diseño de importancia. Ya que la aireación es de primera importancia para los procesos aeróbicos, es necesario comenzar esta sección revisando los conceptos básicos de aireación.
2.2.1.1 Aireación

 Una gran parte de los costos de operación es debido al consumo energético asociado con la aireación. Por lo tanto, es importante diseñar y operar los sistemas eficientemente, para reducir el impacto económico.

La transferencia de oxígeno en los sistemas aeróbicos puede ser llevada a cabo de varias maneras, por ejemplo: mecánicamente, difusores de aire comprimido, alimentación con oxígeno puro, etc. Sin embargo, no importando cual sea el sistema, las leyes físicas que gobiernan la transferencia son comunes a todas ellas. El modelo más usado para explicar la absorción de oxígeno en un líquido supone que la velocidad de transferencia está limitada por la resistencia difusional impuesta por la película líquida estancada, presente en torno a la interfase gas - líquido.
Se recomienda utilizar lagunas en serie para permitir una mayor estabilidad operacional, a la vez de que dicho arreglo ayuda a "especializar" cada laguna, de acuerdo a las características del afluente que recibe. Por ejemplo, la primera laguna recibe la mayor concentración de DBO, por lo que tendrá requerimientos de aireación más altos; las lagunas de las etapas finales presentarán bajas concentraciones de DBO y una mayor proporción de N y P, lo que puede generar una mayor actividad fotosintética.
2.2.1.2 Sistema de Lodos Activados
El sistema de lodos activados es un sistema de tratamiento biológico de mayor velocidad de degradación, debido a que se mantiene una alta concentración de biomasa en el reactor. El sistema consta de dos etapas básicas:
Biorreactor aireado: Donde la biomasa natural (lodos activados) degrada/metaboliza los componentes orgánicos; se forman flóculos.
Sedimentador: Donde los flóculos (lodos) son separados del líquido clarificado y parcialmente reciclados al biorreactor.

La existencia de reciclo de biomasa, implica mantener una población microbiana más alta en el reactor, alcanzando mayores tasas de conversión, para un volumen y tiempo de residencia (hidráulico) dado.

En un estudio preliminar, interesará determinar el volumen del biorreactor, su configuración básica (flujo pistón vs reactor agitado), las dimensiones del sedimentador, los requerimientos de aireación, y otros datos operacionales básicos (razón de reciclo, concentraciones, etc.).
Este tipo de sistemas incluye una amplia gama de diseños, de acuerdo a su configuración, método de aireación y características operacionales. Básicamente, las aguas residuales se ponen en contacto con una población de microorganismos en un biorreactor, bajo condiciones aeróbicas. Los microorganismos consumen el material orgánico disuelto y suspendido. El efluente del reactor se alimenta a un sedimentador (u otro sistema de separación sólido-líquido), donde se obtiene el efluente final clarificado, mientras que los flóculos microbianos (lodos) son concentrados y reciclados parcialmente al biorreactor.

En el reactor, la materia orgánica disuelta se elimina rápidamente, debido a adsorción en los flóculos y aglomeración del material orgánico suspendido. La degradación metabólica del material orgánico tiene lugar más lentamente, por acción de los microorganismos presentes. En este proceso, parte del material orgánico se oxida a CO2 (mineralización) y parte se convierte en nueva masa celular (asimilación). Parte de la masa microbiana muere y se descompone regenerando el material orgánico disuelto. Los lodos desechados representan la cantidad neta de biomasa producida por asimilación
2.2.1.3 Filtros Biológicos
Los sistemas de tratamiento biológico basados en microorganismos inmobilizados en matrices inertes se caracterizan por tener una gran concentración de biomasa y son muy simples de operar. Su eficiencia depende de una buena distribución del material orgánico, del estado de la masa microbiana y de la circulación de aire a través del lecho. Generalmente, el aire circula por convección, debido a las diferencias de temperatura que se generan debido a las reacciones bioquímicas exotérmicas.

Los lechos más sencillos son de roca o escoria de 3-10 cm, con filtros de hasta 3 m de profundidad. En la actualidad existen medios sintéticos más livianos, de gran área específica, lo que permite construir biorreactores de alturas de hasta 12 m.

La nueva masa celular formada es arrastrada por el efluente y separada en un sedimentador secundario. En muchos casos, parte del efluente clarificado se recircula. Normalmente, el líquido se introduce mediante brazos de alimentación mecánicos.
2.2.1.4 Clarificadores Secundarios
Todos los procesos de tratamiento biológico de efluentes generan biomasa, a una tasa de alrededor de 0,5 (kg biomasa/kg DBO removido). Los microorganismos representan la carga orgánica de la corriente original, metabolizada en formas orgánicas más concentradas y de mayor peso molecular. Las bacterias y protozoos floculantes deben ser separados del efluente antes de que éste sea emitido a los medios receptores. Dicha separación normalmente se logra usando sedimentadores (clarificadores) u otras operaciones para la separación sólido-líquido.
El diseño de dichos clarificadores no es sencillo, dado que es una sedimentación Tipo 3. Para lograr una separación satisfactoria es necesario usar procedimientos de diseño basados en datos experimentales sobre las características de sedimentación de los lodos biológicos. Generalmente, los sedimentadores secundarios requieren tiempos de residencia del orden de 4 horas. Se debe evitar que los microorganismos permanezcan mucho tiempo en el clarificador y puedan generar una gran actividad metabólica, ya que ello dificulta su sedimentación.

2.2.2 Procesos  anaeróbicos


Aún cuando los procesos aeróbicos han monopolizado el tratamiento secundario de las descargas industriales, en la actualidad existe un enorme impulso para aprovechar los avances experimentados en el procesamiento anaeróbico. El proceso anaeróbico se usa masivamente en el tratamiento de los lodos producidos por los procesos aeróbicos; de esta manera se reduce el volumen final de los lodos, se estabilizan biológicamente (eliminación de patógenos) y se aprovecha parte del potencial energético.
Entre las ventajas de los procesos anaeróbicos se puede citar:
• Integración energética (produce CH4, 0,35 (m3 std/kg DBO removido)).
• Menor producción de biomasa (1/3-1/5 de lo que genera un proceso aeróbico).
• Menores requerimientos de nutrientes inorgánicos.
• No se requiere aeración; menores costos energéticos.
• Se pueden dejar sin uso por largos períodos (1-25 año) y se reactivan rápidamente (1-3 días).
• Resistente a choques orgánicos.

Entre sus principales limitaciones, se pueden mencionar:
• Menor tasa de eliminación de DBO por unidad de biomasa.
• La puesta en marcha inicial puede demorar meses (1-6 meses).
• La retención de biosólidos es crítica, debido a la baja tasa de producción de lodos  (0,04-0,08 kg/kg DBO).
• Debido a las condiciones reductoras, se producen también muchos otros compuestos (H2S, mercaptanos, ácidos orgánicos y aldehídos) produciendo corrosión y malos olores.
• Sensible a ciertos inhibidores y compuestos tóxicos (ej.: O2, H2O2, Cl2, H2S, HCN, SO3-).

La degradación anaeróbica es un proceso de biodegradación en múltiples etapas, que incluye un amplio rango de bacterias, las cuales se pueden agrupar en 3 categorías:
• Los compuestos de alto peso molecular (ej.: proteínas) sufren primero hidrólisis y son transformados en moléculas simples (azúcares, glicerol, etc), las que luego son convertidas en ácidos orgánicos, H2 y CO2 por las bacterias acidificantes.
• Los ácidos mayores son entonces convertidos a ácido acético e H2 por las bacterias acetogénicas.
• La etapa final (metanogénesis) incluye a tres tipos de bacterias que metabolizan CO2, H2, metanol, ácido fórmico y ácido acético a metano.

Cuando se encuentra presente S inorgánico, la bacteria reductora Desulfovibreo usa el sulfato o sulfito como receptor de electrones, produciendo H2S y CO2. La presencia de SO4- y SO3- limita la eficiencia del sistema, ya que las bacterias reductoras de S y las metanogénicas compiten por el mismo tipo de fuente energética (ácido acético). La producción de metano se puede reducir en 0,7 m3 por cada kg de S reducido.

En la mayoría de los casos, el tratamiento anaeróbico se aplica a líneas de residuo segregadas, con alta concentración de DBO. En muchos casos, se ha usado como una primera etapa de tratamiento, antes de un procesamiento final aeróbico. La temperatura es muy importante: los organismos anaeróbicos más eficientes son mesofílicos o termofílicos. El rango 32-36oC es el más común industrialmente. Las necesidades energéticas se pueden suplir con parte del CH4 generado.
Los requerimientos de N y P son mucho menores que en el proceso aeróbico (en algunos casos,
los efluentes no contienen suficiente N y P y se necesita agregarlos). El pH óptimo para maximizar
el CH4 es 7-7,5. Bajo pH 6 y sobre 8,5 la producción de CH4 cesa.

En la práctica existen 5 configuraciones anaeróbicas en uso: lagunas anaeróbicas, sistemas de
contacto, sistema anaeróbico de flujo ascendente y manto de lodos (UASB), biofiltro anaeróbico y
lecho fluidizado. Estos sistemas se revisan brevemente a continuación.


Lagunas Anaeróbicas: Son el sistema anaeróbico más antiguo en uso (desde los años 40). La laguna está cubierta con material plástico para mantener condiciones anóxicas, recolectar el CH4 y controlar los malos olores. Las bacterias anaeróbicas se desarrollan y permanecen suspendidas gracias a la convección producida por los gases generados. Se puede mejorar la agitación con agitadores de baja velocidad y reciclo de sólidos. Es importante permitir cierto grado de sedimentación para facilitar la hidrólisis y degradación de los sólidos suspendidos. El CH4 se colecta en varios puntos; se mantiene una presión negativa dentro de la cubierta para mantenerla en contacto con la superficie del agua. Las lagunas anaeróbicas son ideales para tratar efluentes con alta concentración de sólidos suspendidos (como podría ser el caso en muchas plantas celulósicas de pulpa mecánica y semiquímica), ya que los sedimentos pueden permanecer por largos períodos en el reactor, permitiendo su degradación. Las lagunas anaeróbicas permiten tratar los lodos residuales de tratamientos aeróbicos a muy bajo costo. Permite también estabilizar el flujo de los efluentes debido a su gran volumen. Desgraciadamente, las lagunas requieren grandes extensiones de terreno, debido a la baja velocidad de las reacciones anaeróbicas (7-10 días de retención), y se pierde calor debido a la gran superficie externa.


Proceso Anaeróbico de Contacto: Es similar a un proceso de Lodos Activados pero en condiciones anaeróbicas. La reacción tiene lugar en un reactor agitado, donde se incluyen los nutrientes requeridos, con control de T y pH. El efluente pasa a un tanque desgasificador donde se permite flocular a la biomasa antes de entrar a un sedimentador, que permite reciclar parte de la biomasa para mantener una alta concentración de biomasa en el reactor. Una ventaja adicional es que los sólidos adsorbidos en los lodos biológicos tienen largos tiempos de residencia permitiendo su hidrólisis. Se ha medido cargas orgánicas de 1-2 (kg DBO removido m−3 día−1), a un 90% eliminación y 35oC.

Sistemas de Flujo Ascendente (UASB): Desarrollado en Wageningen (Paises Bajos) en los años 70. Es uno de los avances más espectaculares en sistemas anaeróbicos de alta tasa. Las bacterias forman gránulos densos que tienden a sedimentar y se mantienen como un manto en el fondo del reactor. La alimentación entra por la parte inferior del reactor. Sobre el lecho existe una zona de manto más floculado (3-10 kg lodos/m3). En el tope del reactor hay un separador de fases, para separar el biogas de los sólidos atrapados en las burbujas ascendentes. Algunas variantes incluyen reciclo. Las principales ventajas del UASB son: - Tiene una puesta en marcha rápida, cuando se usa un inóculo obtenido de una planta existente.
- Existe una alta retención de sólidos, lo que permite tratar aguas con contenido  orgánico bajo 0,4 (kg DBO/m3).
- Se puede utilizar una carga orgánica de 3,5-5 (kg DBO removido m−3 día−1), a 35oC.


Filtros Anaeróbicos: Los filtros anaeróbicos no han encontrado gran acogida en la industria, debido al alto costo del empaque sintético, a pesar de que hay casos exitosos en el sector de bebidas alcohólicas (ej.: Bacardi, Puerto Rico, ha operado contínuamente un filtro de 9200 m3, desde 1981). El concepto es similar al de un filtro aeróbico. Puede operar con cargas orgánicas en el rango 4-15 (kg DBO m−3 día−1).


Lechos Fluidizados: Las bacterias están adheridas a la superficie de partículas de arena, y son mantenidas en suspensión. Es el proceso anaeróbico de alta tasa con mayor carga volumétrica: 17-40 (kg DBO m−3 día−1) y 80-90% eliminación de DBO.


Eliminación de S: El S inorgánico es uno de los principales problemas en la implementación de sistemas anaeróbicos en la industria de celulosa y otros sectores que producen efluentes con contenidos de azufre. Esto se puede mitigar, ya sea reduciendo su presencia en las aguas antes del tratamiento anaeróbico, o usando sistemas en dos etapas. En la primera etapa se produce principalmente H2S el cual puede entrar en un ciclo de oxidación posterior a SO2, mientras que en la segunda etapa se produce la metanación.


Degradación Anaeróbica de los Lodos de Aireación: Hasta ahora, el principal uso de los sistemas anaeróbicos es el tratamiento de los lodos generados en los procesos aeróbicos. Esto reduce el impacto ambiental de las descargas de lodos de aireación (ej.: lodos activados), ya que los estabiliza biológicamente, elimina los patógenos y reduce su volumen final. La digestión anaeróbica de los lodos se hace en el rango mesofílico (35oC). Las características de este proceso son:
Material volátil alimentado: 1-2 (kg material volátil m−3 día−1)
Sólidos suspendidos alimentados: 1,5-2,1 (kg sólidos suspendidos m−3 día−1)
Destrucción de sólidos: 30-35% del inicial
Producción de gas: 0,9-1,2 (m3/kg material volátil destruido)
Poder calorífico del gas: 22.400 (kJ/m3 gas)

Si el diseño es adecuado, se puede lograr que el metano provea la energía no sólo para el control de temperatura en la digestión, sino que también para la aeración en los sistemas aeróbicos presentes en la planta (turbinas de gas), u otros requerimientos energéticos.
Finalmente, los sistemas anaeróbicos ofrecen una serie de ventajas, sobre todo si son usados en combinación con los tratamientos aeróbicos. Existe un gran esfuerzo de investigación para estudiar la acción sobre efluentes recalcitrantes, organoclorados, etc. La utilización de sistemas segregados permite visualizar la implementación de sistemas biológicos adaptados a las características del material orgánico a eliminar.


2.3  Tratamiento Terciario


En esta categoría se incluye sistemas para eliminar otros contaminantes, tales como: metales, nitrógeno, fósforo, compuestos coloreados, y compuestos no biodegradables. Algunos de estos se describe brevemente a continuación.

Sistemas biológicos para la eliminación de nitrógeno: El amonio puede ser transformado en nitrato, utilizando bacterias nitrificantes en medio aeróbico; el nitrato puede ser eliminado en una etapa posterior, bajo condiciones anaeróbicas, donde bacterias denitrificantes lo transforman en N2

Oxidación avanzada: Permite eliminar compuestos orgánicos tóxicos, compuestos cromóforos u otros compuestos orgánicos no biodegradables: Se pueden utilizar agentes oxidantes tales como ozono o peróxido de hidrógeno, que generan radicales libres OH• altamente reactivos. En la actualidad se han implementado estos agentes oxidantes en presencia de radiación UV o de un catalizar de TiO2

Carbón activado: La adsorción en carbón activado se utiliza para eliminar metales, compuestos orgánicos, y cromóforos. El contaminante se adsorbe en la superficie del carbón; sin embargo, ello resulta en un residuo sólido que debe ser tratado. Los carbones activados comerciales presentan un área especifica del orden de 1000 m2/g, con capacidades de adsorción en el rango 10-400 (g contaminante / kg de carbón). El carbón se puede reactivar desorbiendo el contaminante utilizando vapor o gases a alta temperatura.

Precipitación   química: La precipitación química en el tratamiento de aguas residuales implica la adición de compuestos químicos para alterar el estado físico de compuestos disueltos y de sólidos suspendidos, y facilitar la separación sólido/líquido. La formación del precipitado permite adsorber moléculas orgánicas y metales disueltos, y eliminar coloides.
Los coloides (“sols”) son partículas suspendidas en agua de pequeño tamaño (inferior a 0,5 μm) que forman dispersiones estables. Los coloides hidrofóbicos son dispersiones de compuestos insolubles, mientras que los hidrofílicos son soluciones de moléculas con dimensiones coloidales (polímeros, macro-moléculas) que presentan grupos funcionales ionizables ( -COO-H+ , -SiO-H+ , -NH4+). Para separar los coloides de una solución acuosa es necesario, por lo tanto, desestabilizar las partículas coloidales e inducir la agregación. Para ello, se requiere neutralizar o superar las cargas superficiales, mediante la adición de cargas iónicas para neutralizar, ajuste de pH, o adición de polielectrolitos que se quemisorben y actúan como puentes entre partículas.


Precipitación de óxidos metálicos hidratados: Los iones metálicos (Mz+) (ej. Ni, Cu, Pb, Al, Zn) en solución acuosa están asociados a las moléculas de agua en diferentes grados de hidratación: La precipitación de los óxidos metálicos hidratados ocurre a través de una secuencia de etapas, a medida que el pH o la actividad del metal aumenta. El precipitado se forma cuando se supera el producto de solubilidad.
Además, las especies metálicas iónicas pueden ser adsorbidas sobre el hidróxido precipitado. Esta adsorción ocurre incluso contra las fuerzas de repulsión electrostáticas, en un rango de pH crítico donde la hidrólisis comienza. Por ejemplo, el Zn, Cu y Cd son fuertemente adsorbidos por Fe(OH)3 precipitado a pH 8-9. A un pH dado, el grado de adsorción depende del tipo de anión, de las concentraciones de las especies y del tipo de metal.


Hidrólisis ácida y alcalina: La degradación hidrolítica de compuestos tóxicos o persistentes puede efectuarse en condiciones ácidas y alcalinas, dependiendo de la naturaleza de tales compuestos.

Bibliografía

Valdez, E. C., & González, A. B. (2003). Ingeniería de los sistemas de tratamiento y disposición de aguas residuales. México, D.F.: Fundación ICA.
Zaror, C. A. (2000). Introducción a la Ingenieria Ambiental para la Industria de Procesos . Concepción, Chile.

PREVENCIÓN DE ACCIDENTES LABORALES



1.    Introducción


En el desarrollo de su actividad productiva, las personas se encuentran ante situaciones que pueden deteriorar su salud. El trabajo debería influir positivamente en las tres dimensiones de la salud: física, psiquica y social; pero las condiciones de trabajo deficientes generan riesgos. Estas deficiencias pueden estar localizadas en diversos agentes materiales:

• Agentes mecánicos. Ejemplo: Máquina-herramienta sin proteger los engranes de transmisión.
• Agentes físicos. Ejemplo: Ruido.
• Agentes químicos. Ejemplo: Humos de soldadura.
• Agentes biológicos. Ejemplo: Virus.
• Condiciones ergonómicas. Ejemplo: El diseño del puesto de conducción de un vehículo tiene que integrar el asiento, que debe ser reclinable y poderse ajustar al peso y a la altura del operario.
• Aspectos psicosociales. Ejemplo. Ritmos de trabajo.

Los riesgos que se derivan de la utilización de estos agentes con deficiencias o en condiciones ergonómicas y psicosociales adversas pueden traducirse en accidentes y enfermedades de trabajo. De esta problemática es que surge la necesidad de administrar la seguridad y salud laboral, la cual es una disciplina que se enfrenta a lo desconocido. Los peligros comprenden riesgos y oportunidades, y estas palabras tienen que ver con lo desconocido. En cuanto se elimina el elemento desconocido, el problema ya no es de seguridad o de salud. Por ejemplo, todos sabemos lo que pasaría si alguien saltara del décimo piso de un edificio. La muerte instantánea sería virtualmente una certeza y dicho acto no se puede describir apropiadamente como inseguro; sería suicida. Sin embargo, trabajar en el techo de un edificio de 10 pisos de alto sin la intención de caer se convierte en un asunto de seguridad. Los trabajadores sin protección contra las caídas en el techo de un edificio sin guardas están expuestos a un claro peligro. Esto no significa que los trabajadores morirán, o siquiera que resultarán lesionados de alguna manera, pero existe la posibilidad, el elemento desconocido.

Ya que la seguridad y la salud tienen que ver con lo desconocido, no existe una receta paso a paso para eliminar los peligros dentro del lugar de trabajo. Así pues, sólo existen conceptos o métodos que adoptar para reducir el problema. Todos los métodos tienen méritos, pero ninguno es una panacea. Aprovechando sus propias fortalezas, los diferentes administradores de seguridad y salud tienden a concentrarse solamente en algunos métodos favoritos que les resultan familiares.



2.    Método Legal


Las reglas de seguridad con penalización por violarlas han existido casi desde que la gente comenzó a tratar con los riesgos. El método legal puro dice que, ya que la gente no evalúa de manera adecuada los peligros ni adopta precauciones prudentes, se les deben dar reglas que seguir y sujetarlos a penalizaciones por violar dichas reglas. El método legal es simple y directo; es indudable que tiene un impacto. La obligatoriedad debe ser rápida y segura, y las penas lo suficientemente severas. Si se cumplen las condiciones, la gente seguirá las reglas en cierta medida.

La base de cualquier método legal es un conjunto de normas obligatorias. Dichas normas se deben redactar como absolutas, como “siempre haga esto” o “nunca haga eso”. La redacción de excepciones complicadas puede aligerar el problema de algún modo, pero requiere la anticipación a cualquier circunstancia que pudiera encontrarse. Dentro del marco del alcance establecido para la norma y reconociendo todas las situaciones de excepción, cada regla debe ser absolutamente obligatoria para hacerse valer. Sin embargo, el lenguaje obligatorio que utiliza las palabras siempre y nunca es en realidad inapropiado cuando se trata con las incertidumbres de los riesgos de la seguridad y la salud.

Es difícil prevenir accidentes laborales valiéndonos únicamente con el método legal, puesto que este debe de ser reforzado con otros métodos como el psicológico, o la seguridad basada en el comportamiento. Pongamos como ejemplo el siguiente: La NOM-011-STPS-2001 especifica el uso obligatorio de protección auditiva en áreas donde el Nivel sonoro A sea igual o superior a los 85 dB, sin embargo existe la posibilidad de que el personal no respete dicho lineamiento debido a diversos factores como lo son la incomodidad del EPP, la falta de comunicación de los riesgos de la exposición al ruido, la débil cultura de seguridad en la organización, o muchas otras causas posibles.     

3.    Método psicológico


Un método que trata de recompensar los comportamientos seguros. Éste es el método empleado por muchos administradores de seguridad y salud. Los elementos conocidos de este método son los carteles y señalizaciones que recuerdan a los empleados que deben trabajar con seguridad. Es posible que se coloque un gran cartel en la puerta frontal de la planta que muestre el número de días transcurridos desde que ocurrió una lesión con pérdida de tiempo. Las juntas de seguridad, premios departamentales, regalos, recompensas y días de campo se pueden utilizar para reconocer y recompensar los comportamientos seguros.
Las juntas de seguridad en las que se utiliza el método psicológico se caracterizan por intentos de persuasión, algunas veces denominadas pláticas motivacionales. La idea es recompensar a los empleados para que deseen contar con hábitos seguros de trabajo. También se puede generar presión de los compañeros sobre un empleado cuando todo el departamento puede sufrir si una persona tiene una lesión o una enfermedad.
El método psicológico es muy sensible al apoyo de la gerencia. Si no existe dicho apoyo, el método es muy vulnerable. Las insignias de reconocimiento, los certificados e incluso los premios monetarios son recompensas pequeñas si los trabajadores sienten que al ganar estas recompensas no están buscando las metas reales de la gerencia.
Los trabajadores pueden sentir la medida del compromiso que la gerencia tiene con la seguridad mediante las decisiones diarias que toma, no a través de proclamaciones por escrito en el sentido de que todos deben “estar seguros”. Una regla que obligue a utilizar anteojos de seguridad en el área de producción se erosiona cuando la gerencia no los utiliza cuando visita dicha área. Si se ordena hacer a un lado las prácticas seguras cuando debe agilizarse la producción para cumplir oportunamente con una orden, los trabajadores se dan cuenta de lo que la seguridad y la salud de los trabajadores significan para la gerencia. La mayoría de los administradores de seguridad y salud desearían obtener un aval por escrito de la gerencia para el programa de seguridad de la planta; sin embargo, a menos que la gerencia realmente entienda y crea en el programa de seguridad y salud, el aval escrito no es muy valioso. Pronto aparecerá la verdadera orientación de la gerencia.
Los nuevos trabajadores, en particular los jóvenes, se ven particularmente influidos por el método psicológico de la seguridad y la salud. Los empleados que se encuentran en sus últimos años de adolescencia, o al inicio de los veinte, entran al lugar de trabajo habiendo salido recientemente de una estructura social que le da mucha importancia a la osadía y a los riesgos. Estos nuevos trabajadores observan a los supervisores y a los compañeros más experimentados para determinar qué tipo de comportamiento o hábitos de trabajo deben seguir con respecto a la instalación industrial. Si sus colegas más viejos y con mayor experiencia utilizan respiradores o protección auditiva, los trabajadores jóvenes también pueden adoptar estos hábitos de seguridad. Si los compañeros más respetados se ríen de los principios de seguridad o los ignoran, los trabajadores jóvenes pueden tener un muy mal inicio al nunca tomar en serio la seguridad y la salud.

4.    El Método de Ingeniería


Cuando un proceso es ruidoso o presenta exposiciones a materiales tóxicos en el aire, la firma primero debe tratar de rediseñar o modificar el proceso para “excluir por ingeniería” el peligro. Por tanto, los controles de ingeniería reciben la primera preferencia en lo que podría llamarse las tres líneas de defensa contra los riesgos para la salud. Éstos son los siguientes:
1. Controles de ingeniería.
2. Controles administrativos o de prácticas de trabajo.
3. Equipo de protección personal.
Las ventajas del método de ingeniería son obvias. Los controles de ingeniería tratan directamente con el riesgo al retirarlo, ventilarlo, eliminarlo, o de alguna otra manera hacer más seguro y saludable el lugar de trabajo. Esto elimina la necesidad de vivir con el peligro y minimizar sus efectos, en contraste con las estrategias de los controles administrativos y el uso del equipo de protección personal.
Como ejemplo del concepto de las tres líneas de defensa, considere el problema de la exposición crónica al ruido que puede dañar la audición de los trabajadores. La primera, y preferible línea de defensa sería encontrar alguna manera de eliminar la fuente de la exposición al ruido. Esto podría ser un cambio de proceso que se tradujera en un equipo más silencioso, o podría ser el aislamiento del equipo en un cuarto donde los empleados no se expusieran al peligro del ruido. Un control administrativo o de práctica de trabajo sería programar a los trabajadores para que se rotaran, de manera que la exposición al ruido excesivo se limitara a duraciones cortas.
Este método podría combinarse con el método de ingeniería de aislar la fuente del ruido en un cuarto separado al que se tuviera acceso por periodos cortos, sólo cuando fuera necesario y por el personal esencial. El último recurso debiera ser el equipo de protección personal o protectores auditivos, cuya efectividad depende de las acciones del empleado al utilizar realmente el equipo de protección y hacerlo de forma apropiada.

Factores de seguridad: Desde hace mucho tiempo los ingenieros han reconocido el elemento probabilidad en la seguridad y saben que deben proporcionarse márgenes para variación. Este principio básico del diseño de la ingeniería aparece en diversos lugares en las normas de seguridad. Por ejemplo, el factor de seguridad para el diseño de los componentes de un andamio es de 4:1. Para los polipastos de las grúas elevadas el factor es 5:1 y para los cables de los andamios, el factor es 6:1 (es decir, los cables de los andamios se diseñan para soportar seis veces la carga objetivo). La selección de los factores de seguridad es una responsabilidad importante. Sería agradable si todos los factores de seguridad pudieran ser de 10:1, pero en algunas situaciones existen condiciones que hacen que tales grandes factores sean irracionales, incluso inviables. La condición del costo es la obvia, pero no la única. El peso, la estructura de soporte, la velocidad, la potencia y el tamaño son factores que se pueden ver afectados al seleccionar un factor de seguridad demasiado grande. Para llegar a una decisión racional, deben ponderarse las desventajas de los grandes factores de seguridad contra las consecuencias de una falla del sistema. Existen muchos grados de diferencia entre situaciones cuando se evalúan las consecuencias de las fallas de los sistemas.

Principio general de falla-seguridad: El estado resultante de un sistema, en caso de falla de uno de sus componentes, debe ser un modo seguro.
Por lo general, los sistemas o subsistemas tienen dos modos: el activo y el inerte. En la mayoría de las máquinas, el modo inerte es el más seguro de los dos. Por tanto, la ingeniería de seguridad del producto es por lo general muy sencilla: si “se desconecta” la máquina, ya no puede causar daños. Sin embargo, no siempre el modo inerte es el más seguro. Suponga que el sistema es complicado, con subsistemas integrados para proteger al operador y a otros en el área en caso de falla dentro del sistema. En este caso, tirar del cable para desconectar la máquina podría desactivar los subsistemas de seguridad, fundamentales para proteger al operador y a los demás presentes en el área. En el caso de dicho sistema, desconectar la energía podría volver más inseguro al sistema que si estuviera encendido. Los ingenieros de diseño necesitan considerar el principio de falla-seguridad para asegurar que una falla del sistema producirá un modo seguro. Por tanto, es posible que sea necesario proveer energía de respaldo para el funcionamiento apropiado de los subsistemas de seguridad.

Principio de falla-seguridad de redundancia: Una función con importancia crítica de un sistema, subsistema, o componentes, se puede preservar mediante unidades alternas paralelas o de reserva.
El principio de redundancia del diseño se ha utilizado ampliamente en la industria aeroespacial. Cuando los sistemas son tan complicados y de importancia tan crítica como en las aeronaves o en los vehículos espaciales, la función es demasiado importante como para permitir que la falla de un minúsculo componente desactive todo el sistema. Por lo tanto, los ingenieros respaldan los subsistemas primarios con unidades de reserva. Algunas veces, se pueden especificar unidades duales hasta el nivel de componentes. Para funciones extremadamente críticas, se pueden especificar tres o cuatro sistemas de respaldo. En el campo de la seguridad y la salud laboral, algunos sistemas se consideran tan vitales que requieren redundancia en el diseño. Un ejemplo son las prensas mecánicas.

Principio del peor escenario: El diseño de un sistema debe considerar la peor situación a la que pueda estar sujeto durante el uso. En realidad, este principio es un reconocimiento de la ley de Murphy, que establece que “si algo puede fallar, fallará”. La ley de Murphy no es una broma, es una sencilla observación del resultado de la ocurrencia de probabilidades durante un largo periodo. A los eventos aleatorios que tienen un riesgo constante de ocurrencia se les llama procesos Poisson. El diseño de un sistema debe considerar la posibilidad de ocurrencia de algún evento posible que pueda tener un efecto adverso en la seguridad y la salud. Una aplicación del principio del peor escenario se ve en la especificación de los motores a prueba de explosión en los sistemas de ventilación de los cuartos en los que se manejan líquidos inflamables. Los motores a prueba de explosión son mucho más costosos que los motores ordinarios y es posible que las industrias se resistan al requisito de instalarlos, en particular en aquellos procesos en los que los niveles de vapor de las sustancias mezcladas nunca se acercan siquiera al nivel de explosión. Sin embargo, considere el escenario que se presenta un caluroso día de verano en el que ocurre un derrame. El clima caliente eleva el nivel de vapor del líquido inflamable que se está manejando. Un derrame en un momento tan infortunado como éste aumenta dramáticamente la exposición de la superficie del líquido, lo que muchas veces empeora la situación. En ningún otro momento el sistema de ventilación sería tan importante. Sin embargo, si el motor no es a prueba de explosión y se expone a la concentración crítica de los vapores, podría ocurrir una explosión en cuanto se encendiera el sistema de ventilación

Principios de diseño:


Actualmente, los ingenieros confían en una variedad de métodos, o “principios de diseño de la ingeniería” para reducir o eliminar riesgos. A continuación, se enumeran algunos riesgos para estimular ideas sobre las diversas rutas que se pueden tomar para tratar con los riesgos.

1.    Eliminar el proceso o causa del riesgo. Con frecuencia, algún proceso se ha realizado durante tanto tiempo que se considera erróneamente fundamental para la operación de la planta. Después de muchos años de operación, un proceso se vuelve institucional y el personal de la planta tiende a aceptarlo sin cuestionarlo. Sin embargo, los profesionales de la seguridad y la salud tienen la obligación de cuestionar las viejas y aceptadas formas de hacer las cosas si éstas son riesgosas. Es posible que los riesgos que pudieron haberse considerado aceptables en la época en que se diseñó originalmente el proceso, en la actualidad se consideren inaceptables. Pensar de nuevo puede llevar a conclusiones diferentes en relación con la cuestión de qué tan crítica es la necesidad de un proceso particular.
2.    Sustituir por un proceso o material alternativo. Si un proceso es fundamental y debe mantenerse, quizá se pueda sustituir con otro método o material que no sea peligroso. Un buen ejemplo es la sustitución del benceno por solventes menos riesgosos, ya que se ha encontrado que esta sustancia causa leucemia. Otro ejemplo es cambiar un proceso de maquinado para realizar la operación en seco, es decir, sin el beneficio del fluido de corte. Ciertamente muchas operaciones de este tipo de las máquinas herramienta requieren fluido de corte, pero para algunos materiales y procesos, el fluido de corte puede no ser absolutamente necesario y las desventajas pueden superar los beneficios.
3.    Reducir o hacer más lenta la exposición a procesos o materiales peligrosos. Probablemente se pueda reducir la cantidad del material peligroso que se utiliza en el proceso. Incluso si no se puede reducir dicha cantidad en el proceso, posiblemente se pueda reducir el inventario del material peligroso mientras se encuentra almacenado. Con los materiales inflamables, explosivos o tóxicos, parte del peligro existe mientras el material se encuentra almacenado en espera de ser procesado. La misma idea se puede aplicar a la energía de un proceso o de una máquina. Por tanto, reducir la velocidad del equipo puede reducir el riesgo de lesión si algo sale mal. Esta estrategia debe utilizarse juiciosamente porque algunas veces reducir la velocidad de una máquina la hace más peligrosa
4.    Colocar guardas para el personal para evitar la exposición a un peligro. Quizá un proceso es absolutamente fundamental para la operación de la planta y no existe algún sustituto para él o para los materiales peligrosos que se tienen que usar en él. En estos casos, algunas veces es posible controlar la exposición al riesgo colocando guardas para el personal.
5.    Instalar barreras para mantener al personal fuera del área. En contraste con las guardas (que se sujetan a la máquina o al proceso), son barreras independientes que se instalan alrededor del proceso o de la máquina para mantener al personal alejado del peligro. Dichas barreras pueden parecer más una función administrativa o un procedimiento operativo, pero el ingeniero que diseña el proceso puede especificar en particular qué barreras se necesitan alrededor de un proceso y dónde colocarlas.
6.    Advertir al personal mediante alarmas visibles o audibles. En ausencia de otras características de diseño de protección del sistema, algunas veces el ingeniero puede diseñar la máquina o el proceso de manera que el sistema advierta al operador o a otro personal cuando la exposición a un peligro significativo es inminente o probable. Para ser efectiva, la alarma debe utilizarse de forma moderada para que el personal no ignore la luz brillante o la alarma sonora y continúe operando el proceso a pesar de la exposición.
7.    Usar etiquetas de advertencia para informar al personal con el fin de evitar el riesgo. Algunas veces las operaciones fundamentalmente peligrosas no se pueden eliminar, sustituir con un proceso o material menos peligroso, o colocar guardas adecuadas para evitar la exposición del personal. En estas situaciones, cuando menos, con frecuencia es posible colocar una etiqueta de advertencia al proceso o al dispositivo que recuerde al personal los peligros que no controla la máquina o el propio proceso. Este método de diseño no es tan efectivo como los precedentes, porque el personal puede no leer o poner atención a las etiquetas de advertencia. A pesar de la limitada efectividad de las etiquetas de advertencia, son mejor que una total falta de consideración del peligro en el proceso de diseño.
8.    Usar filtros para retirar la exposición a efluentes peligrosos.Algunos riesgos requieren una perspectiva diferente por parte del ingeniero de diseño. El escape de efluentes peligrosos es un ejemplo. Algunas veces, el ingeniero puede diseñar sistemas de filtros en la máquina o el propio proceso para manejar los gases o polvos que pudieran constituir productos indeseables del proceso.
9.    Diseñar sistemas de ventilación de escape para manejar efluentes de procesos. Algunas veces los productos indeseables de un proceso son demasiado peligrosos o no es práctico filtrarlos del aire respirable en el ambiente de un proceso. Otras veces, en estos casos, el propio diseño de la máquina o del proceso puede incluir características que desalojan los agentes peligrosos conforme se producen. De nuevo puede parecer que estas características se encuentran dentro del ámbito de alguien más, como un experto en ventilación o un ingeniero de mantenimiento de la planta. No obstante, el diseñador del propio proceso no debe ignorar las oportunidades para incorporar estas características en el diseño original del proceso o de la máquina.
10. Considerar la interface humana. Después de incluir en el proceso de diseño los principios más directos de la ingeniería de manejar los riesgos, es buena idea revisar nuevamente e identificar todas las interfaces del proceso o de la máquina con el personal. ¿En qué puntos se vuelve necesario que las personas interactúen con la máquina? En dichos puntos, ¿se expone el personal al riesgo? Las interfaces humanas identificadas de esta manera deben incluir las interfaces con el equipo y con los materiales. Cada interface identificada de esta manera debe verificarse de nuevo para encontrar características de diseño que puedan controlar de forma adicional los riesgos utilizando los otros principios de diseño de la ingeniería enumerados en esta sección.

Al igual que los métodos anteriores en la prevención de accidentes el método de ingeniería por si solo puede resultar contraproducente. Un buen ejemplo es el uso de válvulas de cierre accionadas por resorte en las líneas de aire para las herramientas de aire comprimido. El propósito de ese tipo de válvula es evitar la acción de latigueo de la manguera al detener el flujo de aire si la herramienta se separa accidentalmente de la manguera. El súbito flujo de aire supera a la válvula accionada por resorte y la cierra, deteniendo el flujo. El problema ocurre cuando se accionan varias herramientas desde la misma manguera principal y el flujo de aire alcanza un máximo incluso durante el uso normal. El cierre se convierte entonces en una molestia e impide la producción.
 Un segundo problema con el método de ingeniería es el relacionado con el primero: los trabajadores retiran o vencen el propósito de los controles de ingeniería o los dispositivos de seguridad. El ejemplo más obvio es el retiro de las guardas de las máquinas. Antes de culpar a los trabajadores por dicho comportamiento, demos un vistazo cercano al diseño de las guardas. Algunas son tan incómodas que hacen casi imposible trabajar. Algunas guardas de máquinas son tan imprácticas, que generan dudas acerca de los motivos del fabricante del equipo.

Otro ejemplo es el interruptor de límite en una grúa puente. Si el bloque de carga del polipasto se aproxima demasiado al puente, se acciona el interruptor de límite del polipasto, apagando su motor. La idea suena bien, pero el operador puede aprovechar el dispositivo dependiendo del interruptor para detener la carga durante la operación normal. El objetivo del interruptor de límite del polipasto no es servir como control de operación, sin embargo los trabajadores pueden utilizarlo de esa manera. La única defensa contra dicho uso parece ser una capacitación apropiada y actitudes de seguridad por parte del operador, es decir, el método psicológico.

En resumen, el método de ingeniería es bueno y merece el énfasis reciente que está recibiendo. Sin embargo, existen errores, y el administrador de seguridad y salud requiere cierta sofisticación para ver tanto las ventajas como las desventajas de las inversiones propuestas en bienes de capital en sistemas de seguridad y salud. Después de revisar los ejemplos precedentes sobre fallas de ingeniería, se puede ver que se puede abordar casi cualquier problema si se dedica un poco más de tiempo a pensar en el diseño del equipo o en la operación que se pretende realizar con él. La conclusión a la que debemos llegar es que la ingeniería puede resolver problemas de seguridad y de salud, pero el administrador de seguridad y salud no debe asumir ingenuamente que las soluciones serán sencillas.

5.    Método Analítico


Este método aborda los riesgos estudiando sus mecanismos, analizando historiales estadísticos, calculando probabilidades de accidentes, conduciendo estudios epidemiológicos y toxicológicos y evaluando costos y beneficios de la eliminación de riesgos. Muchos de los métodos analíticos, pero no todos, comprenden cálculos.
Análisis de accidentes: Ningún programa de seguridad y salud dentro de una planta se encuentra completo sin alguna forma de revisión de contratiempos que realmente hayan ocurrido. El tema se menciona en este punto para clasificarlo dentro del método analítico y para demostrar su relación con otros métodos de prevención de riesgos. Su única desventaja es que es a posteriori, es decir, el análisis se realiza después del hecho, demasiado tarde para evitar las consecuencias de un accidente que ya sucedió. Sin embargo, el valor del análisis para la prevención de futuros accidentes es crítico.
El análisis de los accidentes no se utiliza siquiera lo suficiente para auxiliar a los otros métodos a evitar riesgos. El método legal sería mucho más agradable para el público si la agencia inspectora dedicara más tiempo a analizar la historia de los accidentes. De esa manera, sólo se emitirían emplazamientos para las violaciones más importantes. El método psicológico también podría fortalecerse mucho al respaldar llamamientos persuasivos con resultados reales de los accidentes. El método de ingeniería necesita el análisis de los accidentes para saber dónde se encuentran los problemas y diseñar una solución que aborde todos sus mecanismos.
Análisis de modo de fallas y efectos: Algunas veces, un riesgo tiene múltiples orígenes y debe realizarse un análisis de causas potenciales. Los ingenieros de confiabilidad utilizan un método llamado análisis de modos de falla y efectos (FMEA, Failure Modes and Effects Analysis) para rastrear los efectos de las fallas de los componentes individuales en la falla global, o “catastrófica”, del equipo. Este análisis se encuentra orientado al equipo, no al riesgo. Por intereses propios, algunas veces los fabricantes de equipos realizan un FMEA antes de liberar un nuevo producto. Otras, los usuarios de estos productos se benefician de algún examen del FMEA del fabricante para determinar lo que provocó que fallara un equipo en uso en particular.
El FMEA se vuelve importante para el administrador de seguridad y salud cuando la falla de un equipo puede provocar una lesión o una enfermedad industrial. Si un equipo es crítico para la salud o seguridad de los empleados, el administrador de seguridad y salud puede decidir solicitar un informe de algún FMEA realizado por el fabricante del equipo o por el posible ofertante. Sin embargo, en la práctica es común que los administradores de seguridad y salud se olviden del FMEA y lo recuerden después de que ha ocurrido un accidente. Ciertamente, los administradores de seguridad y salud deberían cuando menos saber lo que representan las siglas FMEA para que el término no los confunda en un juicio, en caso que los fabricantes de equipo lo utilicen para defender la seguridad de sus productos. Una forma beneficiosa de uso del FMEA antes de que ocurra un accidente es en el mantenimiento preventivo. Todos los componentes de los equipos tienen eventualmente algún mecanismo viable de falla. Utilizar simplemente el equipo hasta que eventualmente falle algunas veces tiene consecuencias trágicas. Considere por ejemplo el cable de una grúa, o los eslabones de una cadena en una eslinga, o los frenos en un montacargas. El FMEA puede dirigir la atención a los componentes críticos que deben anotarse en un programa de mantenimiento que permita inspeccionar y sustituir partes antes que fallen.
Consideremos un ejemplo para reforzar la comprensión del método del FMEA. Un buen candidato para análisis es un respirador. Existen varias formas en las que un respirador puede fallar al realizar su trabajo. Un modo de falla es la saturación del cartucho de filtrado. Resulta necesario examinar las formas en las que se utilizará el respirador para determinar si este modo de falla llevaría a consecuencias catastróficas o si simplemente requiere un cambio de rutina del elemento filtrante. Si la atmósfera representa un peligro agudo para los usuarios del respirador, la saturación del cartucho puede provocar la inconciencia y posteriormente la muerte a las víctimas que no son capaces de realizar las acciones correctivas por sí mismas. Por otro lado, si la atmósfera constituye un peligro serio, pero sólo durante exposiciones prolongadas, como con muchos carcinógenos de bajo nivel, el modo de falla puede llevar a una situación relativamente benigna en la que el usuario nota el olor del cartucho saturado del respirador y lo cambia según el procedimiento. El FMEA se puede utilizar entonces para determinar cuál de los múltiples tipos de respiradores es el apropiado para la aplicación.

Bibliografía

Asfahl, C. R., & Rieske, D. W. (2010). Seguridad Industrial y Administración de la Salud. México: Pearson Educación.
Botta, N. A. (2010). Teorías y Modelización de los Accidentes. Rosario, Argentina: Red Proteger.
ISTAS. (2004). Introducción a la prevención de riesgos laborales. Paralelo Edición, S.A.
OSALAN. (2003). Curso Básico en Prevención de Riesgos Laborales para Delegados y Delegadas de Prevención. Donostia-San Sebastián: Gráficas Lizarra.